Synthesis of New Cyclic Phosphate of Arylglyoxylonitrile Oxime and Their Diastereomers

Zhi Hua MA, Rui Lian SHAO*, Hong Min MA, Jun Ran CHENG, Run Qiu HUANG

National Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071

Abstract: Keeping in view the biological activities of 1,3,2-dioxaphosphorinane-2-one and oxime esters, some compounds possessing these two moieties have been synthesized. The configurational assignment and the ratio of *cis/trans* diastereomers of target products were performed on basis of ¹H NMR, ³¹P NMR and confirmed by X-ray diffraction analysis.

Keywords: 1,3,2-Dioxaphosphorinane-2-one, arylglyoxylonitrile, diastereomers.

As part of our interest in the emergence of new compounds in the field of agrochemicals manufacturing, we have synthesized a series of structurally related compounds belonging to the two following families: 1,3,2-dioxaphosphorinane-2-one and oxime ester¹. The cyclic phosphate introduced in our target molecule could serve as both a new carrier and an active part of the molecule.

Trans-2-chloro-2-oxo-4-phenyl-5,5-dimethyl-1,3,2-dioxaphosphorinane *trans*-**I** is easily obtained by refluxing a mixture of 1,3-propandiols and POCl₃ in dichloromethene². The reaction of *trans*-**I** with arylglyoxlonitrile oximes \mathbf{II}_{a-f} in the presence of phase transfer catalysts resulted in randomization of configuration on the phosphorus center,

Zhi Hua MA et al.

giving both *trans*- \mathbf{III}_{a-f} and *cis*- \mathbf{III}_{a-f} (Scheme-1). The reaction of arylaldoxime with trans-I yielded unstable arylaldoxime cyclic phosphate which tends to decompose through Beckmann fragmentation to give the corresponding nitriles and cyclic phosphoric acid³.

The configurational assignment and the ratio of *cis/trans* isomers of target products were performed on the basis of ¹H NMR, ³¹P NMR. The 4-protons in axial position of *cis* isomers were expected to appear downfield owing to the deshielding by P=O. The *trans* isomers presented ³¹P NMR chemical shifts at higher field than that of *cis* isomer because of the spectral electronic effect referring to the literature⁴. The reaction results are listed in **Table 1**.

ENTRY	Ar	¹ HNMR(δ,ppm) <i>cis/trans</i>	³¹ PNMR(δ,ppm) <i>cis/trans</i>	yield(%) (cis+trans)	ratio (cis:trans)
III _a	Ph	5.65/5.36	-5.59/-9.96	96	1:10.64
III _b	o-Cl-Ph	~/5.42	~/-9.69	90	1:99
III _c	p-Cl-Ph	~/5.34	~/-9.56	91	1:99
III_d	p-t-Bu-Ph	5.58/5.35	-5.94/-10.09	95	1:4.35
IIIe	p-OCH ₃ -Ph	5.52/5.33	~/-9.29	92	1:17.43
III _f	3,4-OCH ₂ O-Ph	5.53/5.32	~/-9.57	72.2	1:9.13

Table 1. Stereochemistry Results of the PTC* Catalyzed Synthesis of III_{a-f}

*PTC=PhCH₂N(C₂H₅)₃Cl

The spatial structure of *trans*-III_a has been confirmed by X-ray diffraction analysis⁵. It is shown that 4-phenyl is *trans* to the oxime moiety and the configuration of oxime moiety is Z.

Acknowledgments:

This project was supported by the Natural Science Foundation of Tianjin.

References and notes

- 1 B. A. Wilson, M. J. Hooper, et al, Reactivation of organophosphorus inhibited acetylcholin-esterase with oximes, in Organophosphates (eds. J.E.Chambers, P.E.Levi), San Diego: Academic, **1992**,107.
- 2 R. L. Shao, G. F. Yang, W. S. Miao, M. H. Yang, Chinese Chem. Lett., 1997, 8(10), 855.
- 3 R. L. Shao, H. S. Zhang, S. P. Wang, Acta Chimica Sinica, 1991, 49, 98.
- 4 R. Hulst, R. W. J. Zijlstra, et al, Tetrahedron: Asymmetry, 1994, 5(9), 1701.
- 5 Crystallographic parameters have been deposited in the editorial office of CCL.

Received 24 December 1998

446